New England's premier independent source for the professional A/V integrator

Panamorph

Professional Grade Anamorphic Lens Systems

Please call the office for pricing and ordering details.

INSTANT DEMO

WHICH WAY WOULD YOU RATHER WATCH MOVIES?

This is how major motion pictures look on a standard 16:9 screen or any flat panel TV. Recognize those annoying black bars?

This is how major motion pictures look in true cinema widescreen format using a Panamorph lens system on a wider 2.40:1 screen.

With a Panamorph lens, you gain over 30% more brightness and resolution and an 80% larger image. With no black bars.

Install Considerations

All Lens Systems:

- . Distance to audience should be approximately 3X the screen height or greater.
- · Avoid using any horizontal lens shift (vertical shift is ok).
- If lens requires cleaning use a soft lint free cloth and a photographic lens cleaning solution.

UH480 Lens Systems (A480SYS, M480SYS, F480SYS):

- Minimum throw at least 1.6X the native 16:9 image width of the projector, or 2.85X the screen height.
- Throw may be reduced to 1.3X the native image width (or 2.3X the screen height) with use of a curved screen.
- Throw distance should be between 12 20 ft. If a longer throw distance is required, optional
 conversion kits are available from Panamorph at an additional cost.

UV200 Lens System:

- Minimum throw at least 1.8X the native 16:9 image width of the projector, or 4.3X the screen height for 2.35:1 / 2.40:1 screens (constant height systems).
- Minimum throw at least 1.8X the native 16:9 image width of the projector, or 3.2X the screen height for 16:9 screens (constant width systems).
- Throw distance should be between 12 28 ft.
- The UV200 is always used in a "fixed" configuration when paired with a 2.35:1 or 2.40:1 screen.
- The UV200 should NEVER be paired with a curved screen.

Screen Aspect Ratio

Although many people refer to anamorphic projection as "2.35:1", most movies since the mid-70's are actually shot 2.39 or 2.40:1.

Home theater anamorphic lenses usually expand the 16:9 image by 33%, resulting in a 2.37:1 aspect ratio.

Both 2.35:1 and 2.40:1 screen ratios will work in a home cinema, with 2.35:1 requiring slightly more overscan in the horizontal plane, and 2.40:1 requiring slightly more overscan in the vertical plane.

Blue – Screen Image Area White – Projected Image Area through Anamorphic Lens

2.40:1 Screen

Blue – Screen Image Area White – Projected Image Area through Anamorphic Lens

2.35:1 Screen

Panamorph Mode I Scaling (for all Lens Systems)

Typical 2.40:1 movie within the 16:9 frame (263 lines are unused)

2.40:1 movie is vertically stretched by the projector or scaler to fill the 16:9 area and use all 1920 x 1080 pixels

16:9 frame is horizontally stretched back to 2.40:1 by the anamorphic lens

Panamorph Mode II Scaling (for Fixed Lens Systems)

Native 16:9 image improperly stretched by the anamorphic lens on a 2.40:1 screen

Image is horizontally "squeezed" 25% by the electronic scaler (usually built into the projector and called "4:3" or "Normal" Mode)

16:9 image is now properly displayed